Use of Time-Series Predictive Models for Piezoelectric Active-Sensing in Structural Health Monitoring Applications

Author:

Figueiredo Eloi,Park Gyuhae,Farinholt Kevin M.1,Farrar Charles R.1,Lee Jung-Ryul2

Affiliation:

1. The Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2. Department of Aerospace Engineering and LANL-CBNU Engineering Institute Korea, ChonBuk National University, Jeonju, 561-756, South Korea

Abstract

In this paper, time domain data from piezoelectric active-sensing techniques is utilized for structural health monitoring (SHM) applications. Piezoelectric transducers have been increasingly used in SHM because of their proven advantages. Especially, their ability to provide known repeatable inputs for active-sensing approaches to SHM makes the development of SHM signal processing algorithms more efficient and less susceptible to operational and environmental variability. However, to date, most of these techniques have been based on frequency domain analysis, such as impedance-based or high-frequency response functions-based SHM techniques. Even with Lamb wave propagations, most researchers adopt frequency domain or other analysis for damage-sensitive feature extraction. Therefore, this study investigates the use of a time-series predictive model which utilizes the data obtained from piezoelectric active-sensors. In particular, time series autoregressive models with exogenous inputs are implemented in order to extract damage-sensitive features from the measurements made by piezoelectric active-sensors. The test structure considered in this study is a composite plate, where several damage conditions were artificially imposed. The performance of this approach is compared to that of analysis based on frequency response functions and its capability for SHM is demonstrated.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3