Damage quantification using transfer component analysis combined with Gaussian process regression

Author:

Omori Yano Marcus1ORCID,da Silva Samuel1ORCID,Figueiredo Eloi23ORCID,Giacon Villani Luis G4ORCID

Affiliation:

1. Departamento de Engenharia Mecânica, UNESP - Universidade Estadual Paulista, Ilha Solteira, Brasil

2. Faculty of Engineering, Lusófona University, Lisboa, Portugal

3. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

4. Departamento de Engenharia Mecânica, Centro Tecnológico, UFES - Universidade Federal do Espírito Santo, Vitória, Brasil

Abstract

Machine learning methods used in Structural Health Monitoring applications still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their probability distributions that do not allow the model’s generalization for damage detection. This issue is even more complex in situations where one wants to quantify damage levels through data sets collected from different structures. Transfer learning methods offer a solution to overcome those limitations, using relevant information from a labeled structure (source domain) to assist the analysis of another structure (target domain) under unknown conditions. Therefore, this paper proposes the use of transfer component analysis to mitigate divergences between the model/structure’s features, and the label consistency requirement is applied in combination with a Gaussian process regression model for damage quantification. The effectiveness of the estimated model improves when the labels consistency between domains is achieved, indicating the current damage level in the structure when the regression model achieves its best performance (lowest error). The proposed methodology is applied on the benchmark data of a three-story building structure from the Los Alamos National Laboratory using the knowledge from its numerical model under several conditions, where the complete information of its behavior is available. The results compare the analysis in the original space and after applying the proposed methodology, demonstrating an improvement of the performance in the damage detection and quantification steps.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

FCT/MCTES

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3