Affiliation:
1. Department of Civil and Environmental Engineering, University of California, Davis, CA 95616
2. Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, 70569 Stuttgart, Germany
Abstract
This paper reports on the prediction of heat transfer in a fully developed turbulent flow in a straight rotating channel with blowing and suction through opposite walls. The channel is rotated about its spanwise axis; a mode of rotation that amplifies the turbulent activity on one wall and suppresses it on the opposite wall leading to reverse transition at high rotation rates. The present predictions are based on the solution of the Reynolds-averaged forms of the governing equations using a second-order accurate finite-volume formulation. The effects of turbulence on momentum transport were accounted for by using a differential Reynolds-stress transport closure. A number of alternative formulations for the difficult fluctuating pressure–strain correlations term were assessed. These included a high turbulence Reynolds-number formulation that required a “wall-function” to bridge the near-wall region as well as three alternative low Reynolds-number formulations that permitted integration through the viscous sublayer, directly to the walls. The models were assessed by comparisons with experimental data for flows in channels at Reynolds-numbers spanning the range of laminar, transitional, and turbulent regimes. The turbulent heat fluxes were modeled via two very different approaches: one involved the solution of a modeled differential transport equation for each of the three heat-flux components, while in the other, the heat fluxes were obtained from an explicit algebraic model derived from tensor representation theory. The results for rotating channels with wall suction and blowing show that the algebraic model, when properly extended to incorporate the effects of rotation, yields results that are essentially identically to those obtained with the far more complex and computationally intensive heat-flux transport closure. This outcome argues in favor of incorporation of the algebraic model in industry-standard turbomachinery codes.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献