Prediction of Turbulent Heat Transfer in Rotating and Nonrotating Channels With Wall Suction and Blowing

Author:

Younis B. A.1,Weigand B.2,Laqua A.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Davis, CA 95616

2. Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, 70569 Stuttgart, Germany

Abstract

This paper reports on the prediction of heat transfer in a fully developed turbulent flow in a straight rotating channel with blowing and suction through opposite walls. The channel is rotated about its spanwise axis; a mode of rotation that amplifies the turbulent activity on one wall and suppresses it on the opposite wall leading to reverse transition at high rotation rates. The present predictions are based on the solution of the Reynolds-averaged forms of the governing equations using a second-order accurate finite-volume formulation. The effects of turbulence on momentum transport were accounted for by using a differential Reynolds-stress transport closure. A number of alternative formulations for the difficult fluctuating pressure–strain correlations term were assessed. These included a high turbulence Reynolds-number formulation that required a “wall-function” to bridge the near-wall region as well as three alternative low Reynolds-number formulations that permitted integration through the viscous sublayer, directly to the walls. The models were assessed by comparisons with experimental data for flows in channels at Reynolds-numbers spanning the range of laminar, transitional, and turbulent regimes. The turbulent heat fluxes were modeled via two very different approaches: one involved the solution of a modeled differential transport equation for each of the three heat-flux components, while in the other, the heat fluxes were obtained from an explicit algebraic model derived from tensor representation theory. The results for rotating channels with wall suction and blowing show that the algebraic model, when properly extended to incorporate the effects of rotation, yields results that are essentially identically to those obtained with the far more complex and computationally intensive heat-flux transport closure. This outcome argues in favor of incorporation of the algebraic model in industry-standard turbomachinery codes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3