Heat Transfer Predictions With Extended k–ε Turbulence Model in Radial Cooling Ducts Rotating in Orthogonal Mode

Author:

Tekriwal P.1

Affiliation:

1. GE Corporate Research and Development, Schenectady, NY 12301

Abstract

Standard and extended k–ε turbulence closure models have been employed for three-dimensional heat transfer calculations for radially outward flow in rectangular and square cooling passages rotating in orthogonal mode. The objective of this modeling effort is to validate the numerical model in an attempt to fill the gap between model predictions and the experimental data for heat transfer in rotating systems. While the trend of heat transfer predictions by the standard k–ε turbulence model is satisfactory, the differences between the data and the predictions are approximately 30 percent or so in the case of high rotation number flow. The extended k–ε turbulence model takes an approach where an extra “source” term based on a second time scale of the turbulent kinetic energy production rate is added to the equation for the dissipation rate of turbulent kinetic energy. This yields a more effective calculation of turbulent kinetic energy as compared to the standard k–ε turbulence model in the case of high rotation number and high density ratio flow. As a result, comparison with the experimental data available in the literature shows that an improvement of up to a significant 15 percent (with respect to data) in the heat transfer coefficient predictions is achieved over the standard k–ε model in the case of high rotation number flow. Comparisons between the results of the standard k–ε model and the extended formulation are made at different rotation numbers, different Reynolds numbers, and varying temperature ratio. The results of the extended k–ε turbulence model are either as good or better than those of the standard k–ε model in all these cases of parametric study. Thus, the extended k–ε turbulence model proves to be more general and reduces the discrepancy between the model predictions and the experimental data for heat transfer in rotating systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3