Flow Resistance Network Analysis in Fan-Cooled High-Density Packaging Electronic Equipment

Author:

Fukue Takashi1,Hatakeyama Tomoyuki2,Ishizuka Masaru2,Hirose Koichi1,Obata Kazuma1,Koizumi Katsuhiro3

Affiliation:

1. Iwate University, Morioka, Japan

2. Toyama Prefectural University, Imizu, Japan

3. COSEL Co., Ltd., Toyama, Japan

Abstract

This study describes an application of the flow resistance network analysis to thermal design of fan-cooled electronic equipment. Especially, a modeling method of the flow resistance network was investigated. Current electronic equipment becomes smaller and thinner while their functions become more complex. As a result, flow passages for cooling air become complex. In order to simulate the complex airflow in high-density packaging electronic equipment by using the flow resistance network, we tried to develop the flow resistance network by support of the 3D-CFD analysis. A test model which simulates high-density packaging electronic equipment is prepared and the flow resistance network analysis is applied to the prediction of flow rate distribution in the model. Through the investigation, we obtained information and future problems about the development of the flow resistance network in electronic equipment with lots of electrical components.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision of Cooling Design of Forced Convection for Near-Future Electronic Equipment;Journal of The Japan Institute of Electronics Packaging;2021-03-01

2. Novel Development for Thermal Design of Electronic Equipment Using Pulsating Flow from Knowledge of Nature;Journal of The Japan Institute of Electronics Packaging;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3