Modeling and Simulation Challenges in Embedded Two Phase Cooling: DARPA’s ICECool Program

Author:

Matin Kaiser1,Bar-Cohen Avram2,Maurer Joseph J.3

Affiliation:

1. System Planning Corporation, Arlington, VA

2. Defense Advanced Research Projects Agency, Arlington, VA

3. Booz Allen Hamilton, Arlington, VA

Abstract

Modeling and simulation of two-phase phenomena, as well as their impact on electrical performance and physical integrity are critical to the success of embedded cooling strategies. In DARPA’s Intrachip/Interchip Embedded Cooling (ICECool) program, thermal/electrical/mechanical co-simulation and modeling tools are being applied to the analysis and design of RF GaN MMIC (Monolithic Microwave Integrated Circuit) Power Amplifiers (PA) and digital ICs, with the ultimate goal of achieving greater than 3X electronic performance improvement. This paper addresses various simulation strategies and numerical techniques adopted by the DARPA ICECool performers, with attention devoted to co-simulation through coupled iterations of thermal, mechanical and electrical behavior for capturing device characteristics and predicting reliability and “best in class” simulations that can provide an understanding of device behavior during rugged operating conditions impacted by multi-physics environments. The effect of CTE (Coefficient of Thermal Expansion) mismatch on bond and structural integrity, the impact of cooling fluid choice on performance, the factors affecting erosion/corrosion in the microchannels, as well as electro-migration limits and joule heating effects, will also be addressed. A separate discussion of various two-phase issues, including interface tracking, system pressure drops, conjugate heat transfer, estimating near wall heat transfer coefficients, and predicting CHF (Critical Heat Flux) and dryout is also provided.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flat plate two-phase heat spreader on the thermal management of high-power electronics: a review;Journal of Mechanical Science and Technology;2021-10-31

2. A review of GaN HEMT broadband power amplifiers;AEU - International Journal of Electronics and Communications;2020-03

3. Embedded Cooling for Wide Bandgap Power Amplifiers: A Review;Journal of Electronic Packaging;2019-07-30

4. Modeling and Analysis for Thermal Management in Gallium Nitride HEMTs Using Microfluidic Cooling;Journal of Electronic Packaging;2016-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3