Effects of Test Temperature and Prior Aging on the Cyclic Stress-Strain Behavior of Lead Free Solders

Author:

Haq Mohammad Ashraful1,Hoque Mohd Aminul1,Suhling Jeffrey C.1,Lall Pradeep1

Affiliation:

1. Auburn University, Auburn, AL

Abstract

Abstract In temperature changing environments, solder joints often experience fatigue failure due to cyclic mechanical stresses and strains induced by mismatches in the coefficients of thermal expansion. These stresses and strains lead to damage accumulation and contribute to the crack initiation, crack propagation, and eventually to failure. In this study, we have investigated the cyclic stress-strain behavior of SAC305 and SAC_Q reflowed lead free solders that occur at various testing temperatures and with various prior aging conditions. Lead free solder uniaxial test specimens with circular cross-section have been prepared using vacuum suction method and then were aged for 0 to 20 days at 125 °C. The samples were then subjected to cyclic stress-strain loading using a Micro-mechanical tester at different testing temperatures from T = 25 C to T = 100 C. The evolution of hysteresis loops with duration of prior aging was characterized by measuring the strain energy density dissipated per cycle (loop area), peak stress, and plastic strain range. It was observed that aging degrades the mechanical fatigue properties due to microstructural coarsening. At elevated temperatures, a drop in the loop area and peak stress and an increase in the plastic strain range for both lead free reflowed solder materials were obtained. In addition, SAC_Q samples had a higher loop area and peak stress compared to SAC305.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability modeling of the fatigue life of lead-free solder joints at different testing temperatures and load levels using the Arrhenius model;Scientific Reports;2023-02-13

2. Reliability and Thermal Fatigue Life Prediction of Solder Joints Using Nanoindentation;2023

3. High Strain Rate Mechanical Properties of M758 Solder at Extreme Surrounding Temperatures, with 100°C Isothermal Aging for up to 180 Days;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

4. Mechanical Behavior and Microstructure Evolution in SAC+Bi Lead Free Solders Subjected to Mechanical Cycling;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

5. Evolution of the Creep Behavior for SAC305 Lead Free Solder Exposed to Various Thermal Profiles;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3