The Effects of Curing Profile, Temperature, and Aging on the Mechanical Behavior of Solder Mask Materials

Author:

Chowdhury Promod R.1,Suhling Jeffrey C.1,Lall Pradeep1

Affiliation:

1. Auburn University, Auburn, AL

Abstract

In this work, the mechanical behavior of a typical UV curable solder mask material has been explored as a function of ultra violet (UV) curing time, testing temperature, and isothermal aging exposure. Mechanical testing has been performed using standard tensile testing. For the tensile testing, a specimen preparation procedure has been developed to make 80 × 3 mm uniaxial tension test samples with a defined thickness (e.g. 0.30 mm), and both stress-strain and creep tests were performed. The solder mask test specimens were prepared in a unique way and no release agent is required to extract them from the mold. The mechanical behavior changes of the solder mask material were recorded for different curing profiles including various durations of UV exposure and subsequent isothermal curing. The results showed that an optimum UV exposure time was critical to provide acceptable mechanical properties. In addition, the stress-strain and creep behavior of the solder mask were recorded for various temperatures from 25 to 125 °C, and the mechanical properties were found to degrade significantly at elevated temperatures as expected. The experimental results showed that variations of thermal curing profile (curing temperature and time) also change the mechanical properties significantly, so that solder masks have a very small optimum processing window. Finally, the effects of isothermal aging at 100 °C on the material behavior were characterized for different aging times. Using the recorded data, the changes in the elastic modulus, strength, and creep rate were characterized as a function of aging time. Significant variations were observed in the elastic modulus (250%) and ultimate strength (150%) of the aged samples.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Material Aging on the Reliability of an Automotive BGA Device Under Temperature Cycling Test Conditions;2024 IEEE 74th Electronic Components and Technology Conference (ECTC);2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3