Application of Large Eddy Simulation to Flow Past a Circular Cylinder

Author:

Lu X.1,Dalton C.1,Zhang J.1

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX 77204

Abstract

A steady approach flow around a circular cylinder is investigated by using a large eddy simulation (LES) with the Smagorinsky subgrid-scale model. A second-order accurate in time fractional-step method and a combined finite-difference/spectral approximation are employed to solve the filtered three-dimensional incompressible Navier-Stokes equations. To demonstrate the viability and accuracy of the method, we present results at Reynolds numbers of 100, 3 × 103, 2 × 104, and 4.42 × 104. At Re = 100, the physical flow is two-dimensional and the calculation is done without use of the LES method. For the higher values of Re, the flow in the wake is three-dimensional and turbulent and the LES method is necessary to describe the flow accurately. Calculated values of lift and drag coefficients and Strouhal number are in good agreement with the experimentally determined values at all of the Reynolds numbers for which calculation was done.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference12 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3