LES study on traveling wave wall control for the wake of flow around a 3D circular cylinder at high Reynolds number

Author:

Xu Feng1ORCID,Liu Xin1,Chen Wen-Li23ORCID,Duan Zhong-Dong1,Ou Jin-Ping1

Affiliation:

1. School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China

2. Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China

3. Key Laboratory of Structures Dynamic Behaviour and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, China

Abstract

Flow around a cylinder is an important research problem in fluid mechanics. However, studies on traveling wave wall (TWW) flow control for the wake generated by the flow around a 3D cylinder remain limited. This study performs large eddy simulation (LES) to investigate the wake characteristics of flow around a three-dimensional (3D) circular cylinder with the TWW. The influence of the main control parameters of TWW on the aerodynamic forces and wake of the 3D cylinder is analyzed. The wake characteristics of the 3D cylinder at Re = 4 × 104 are obtained, and the traveling wave propagating downstream is achieved on the rear surface of the 3D cylinder using dynamic mesh. The control effects of wave amplitude, number of waves, and wave velocity of the traveling wave on the aerodynamic forces of the cylinder are analyzed, and the optimal control parameter combination is determined. The results demonstrate that the TWW control method completely eliminates the spanwise 3D flow characteristics of the cylinder when the amplitude ratio, number of waves, and velocity ratio are 0.02, 4, and 1.5, respectively. Moreover, it effectively suppresses the flow separation on the cylinder surface, eliminates the wake vortex, and suppresses vortex-induced vibration (VIV).

Funder

Natural Science Foundation of Guangdong Province

Stability Support Program for Colleges and Universities in Shenzhen

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds of Shenzhen Science and Technology Plan

Shenzhen Science and Technology Program

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3