Dynamic Trajectory Planning for a Three Degrees-of-Freedom Cable-Driven Parallel Robot Using Quintic B-Splines

Author:

Qian Sen1,Bao Kunlong1,Zi Bin1,Zhu W. D.2

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

2. Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3