Modeling Welding by Surface Heating

Author:

Sheng I. C.1,Chen Y.1

Affiliation:

1. Department of Mechanics and Materials Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855-0909

Abstract

A mathematical model has been developed in describing the temperature distribution, the flow of the molten fluid and the stress field in the solid during welding. In modeling the properties of the material during welding, the solid phase is assumed to behave as a thermoviscoplastic solid obeying Bodner-Partom/Walker type constitutive equation, whereas the fluid phase as a thermoviscous incompressible fluid. Three regions exist: pure solid, pure fluid, and the transition (solid-fluid mixture). In the formulation of the boundary value problem, the energy equation is coupled to the equation of motion through the terms of mechanical work and the latent heat of the phases, whereas the equations of motion of the solid and the fluid are decoupled. Appropriate thermal and traction boundary conditions are detailed in the text. Phase transformation activities during cooling are monitored by CCT diagram and Avrami equation. An arbitrary Lagrangian and Eulerian method is used to accommodate the kinematic description of both the solid and the fluid phases. A representative plane perpendicular to the moving heat source is analyzed. Results of sample calculations are presented to show the temperature and the stress evolution in time. Residual stress and microstructure patterns are presented.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3