Affiliation:
1. e-mail:
2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061
Abstract
Thermally induced residual stresses due to welding can significantly impair the performance and reliability of welded structures. From a structural integrity perspective of welded structures, it is necessary to have an accurate spatial and temporal thermal distribution in the welded structure before stress analysis is performed. Existing research has ignored the effect of fluid flow in the weld pool on the temperature field of the welded joint. Previous research has established that the weld pool depth/width (D/W) ratio and heat affected zone (HAZ) are significantly altered by the weld pool dynamics. Hence, for a more accurate estimation of the thermally induced stresses it is desired to incorporate the weld pool dynamics into the analysis. Moreover, the effects of microstructure evolution in the HAZ on the mechanical behavior of the structure need to be included in the analysis for better mechanical response prediction. In this study, a three-dimensional numerical model for the thermomechanical analysis of gas tungsten arc (GTA) welding of thin stainless steel butt-joint plates has been developed. The model incorporates the effects of thermal energy redistribution through weld pool dynamics into the structural behavior calculations. Through material modeling the effects of microstructure change/phase transformation are indirectly included in the model. The developed weld pool dynamics model includes the effects of current, arc length, and electrode angle on the heat flux and current density distributions. All the major weld pool driving forces are included, namely surface tension gradient induced convection, plasma induced drag force, electromagnetic force, and buoyancy. The weld D/W predictions are validated with experimental results. They agree well. The workpiece deformation and stress distributions are also highlighted. The mathematical framework developed here serves as a robust tool for better quantification of thermally induced stress evolution and distribution in a welded structure by coupling the different fields in a welding process.
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Reference53 articles.
1. A Numerical Thermo-Mechanical Model for the Welding and Subsequent Loading of a Fabricated Structures;Comput. Struct.,1973
2. Three Dimensional Thermal Stress Analysis of a Welded Plate by the FEM;Trans. CSME,1986
3. Thermal and Mechanical Simulations of Resistance Spot Welding;Weld. Res. Counc. Bull.,1990
4. Thermal Effects in Friction Welding;Int. J. Mech. Sci.,1990
5. Khandkar, M. H. Z., and Khan, J. A., 2003, “Predicting Residual Thermal Stresses in Friction Stir Welding,” ASMEIMECE, Washington, DC, Nov. 15–21, Vol. 3, pp. 355–359.10.1115/IMECE2003-55048
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献