Droplet Formation in Dynamic Stratified Liquid–Liquid Systems for Solution-Based Deposition Methods

Author:

Prussack Brett A.1,Foradori Sean M.2,Arnold Michael S.2,Nellis Gregory F.1,Berson Arganthael1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin–Madison, 1513 University Ave., Madison, WI 53706

2. Department of Materials Science and Engineering, University of Wisconsin–Madison, 1509 University Ave., Madison, WI 53706

Abstract

Abstract The assembly of a two-dimensional (2D) nematic liquid crystal at an interface between two liquids can be exploited to assemble densely packed and highly aligned arrays of rod-like nanoparticles. This method is especially relevant to creating arrays of semiconducting carbon nanotubes (CNTs) for high-performance electronics. When a dense solvent containing CNTs flows over a less dense water subphase in a confined channel, the locally aligned arrays of nanoparticles align globally with the flow direction and can be transferred to the substrate. For large substrates and long channels, the dense solvent tends to slow and create a pool, which then drops through the interface and disturbs the delicate deposition process. Understanding this phenomenon is critical to improving and scaling up similar manufacturing processes. Here, data are collected, and an empirical model is developed to understand and predict the pooling behavior of a suspended fluid flowing over a less dense subphase. The model is demonstrated with two different solvents and proves to be accurate within +/− 15%. With a better understanding of the physics governing the system, the model is then used to suggest methods for minimizing pooling behavior.

Funder

National Science Foundation

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3