A Semi-Infinite Strip Pressed Against an Elastic Half-Plane With Frictional Slip

Author:

Adams George G.1

Affiliation:

1. Department of Mechanical Engineering, Northeastern University, Boston, MA 02115 e-mail:

Abstract

The subject of this investigation is the plane strain elasticity problem of a finite width semi-infinite strip with its end pressed against a half-plane of the same material with friction. From the existing integral equation solution for a perfect bond, it is shown that the length of the zone of frictional slip and the value of the slip displacement can both be inferred. It is further shown how this method allows a finite element stress analysis of a structure, obtained with the simple assumption of a perfect bond, to be used instead of the more complicated finite element structural analysis with frictional slip. Nonetheless, the results of this simpler finite element analysis can be used to infer the length of the frictional slip zone and the magnitude of the slip displacement. It is expected that this method will be valuable in the analysis of the mechanics of fretting. Damage due to fretting fatigue is initiated due to frictional slip near the edges of the interface between two connected materials. The stress analysis of structures, which includes these frictional slip zones, is considerably more complicated than it is for a perfect bond, often making it impractical to include in a comprehensive finite element model of the complete structure. Thus, the methodology used in this paper should allow the size of the frictional slip zones and the frictional slip displacements to be inferred directly from the stress analysis for a perfect bond.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3