A Crack Close to and Perpendicular to an Interface: Resolution of Anomalous Behavior With a Cohesive Zone

Author:

Adams George G.1

Affiliation:

1. Department of Mechanical Engineering, Northeastern University, Boston, MA 02115 e-mail:

Abstract

In this investigation, we consider a crack close to and perpendicular to a bimaterial interface. If the crack tip is at the interface then, depending on material properties, the order of the stress singularity will be equal to, less than, or greater than one-half. However, if the crack tip is located any finite distance away from the interface the stress field is square-root singular. Thus, as the crack tip approaches the interface, the stress intensity factor approaches zero (for cases corresponding to a singularity of order less than one-half) or infinity (for a singularity of order greater than one-half). The implication of this behavior is that for a finite applied pressure the crack will either never reach the interface or will reach the interface with vanishing small applied pressure. In this investigation, a cohesive zone model is used in order to model the crack behavior. It is found that the aforementioned anomalous behavior for the crack without a cohesive zone disappears and that the critical value of the applied pressure for the crack to reach the interface is finite and depends on the maximum stress of the cohesive zone model, as well as on the work of adhesion and the Dundurs' parameters.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3