Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design

Author:

Bhattacharjee Kalyan Shankar1,Singh Hemant Kumar1,Ray Tapabrata1

Affiliation:

1. School of Engineering and IT, The University of New South Wales, Canberra, ACT 2600, Australia e-mail:

Abstract

Engineering design often involves problems with multiple conflicting performance criteria, commonly referred to as multi-objective optimization problems (MOP). MOPs are known to be particularly challenging if the number of objectives is more than three. This has motivated recent attempts to solve MOPs with more than three objectives, which are now more specifically referred to as “many-objective” optimization problems (MaOPs). Evolutionary algorithms (EAs) used to solve such problems require numerous design evaluations prior to convergence. This is not practical for engineering applications involving computationally expensive evaluations such as computational fluid dynamics and finite element analysis. While the use of surrogates has been commonly studied for single-objective optimization, there is scarce literature on its use for MOPs/MaOPs. This paper attempts to bridge this research gap by introducing a surrogate-assisted optimization algorithm for solving MOP/MaOP within a limited computing budget. The algorithm relies on principles of decomposition and adaptation of reference vectors for effective search. The flexibility of function representation is offered through the use of multiple types of surrogate models. Furthermore, to efficiently deal with constrained MaOPs, marginally infeasible solutions are promoted during initial phases of the search. The performance of the proposed algorithm is benchmarked with the state-of-the-art approaches using a range of problems with up to ten objective problems. Thereafter, a case study involving vehicle design is presented to demonstrate the utility of the approach.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3