A Novel Decomposition-Based Evolutionary Algorithm for Engineering Design Optimization

Author:

Shankar Bhattacharjee Kalyan1,Kumar Singh Hemant1,Ray Tapabrata1

Affiliation:

1. School of Engineering and Information Technology, The University of New South Wales, Canberra 2600, Australia e-mail:

Abstract

In recent years, evolutionary algorithms based on the concept of “decomposition” have gained significant attention for solving multi-objective optimization problems. They have been particularly instrumental in solving problems with four or more objectives, which are further classified as many-objective optimization problems. In this paper, we first review the cause-effect relationships introduced by commonly adopted schemes in such algorithms. Thereafter, we introduce a decomposition-based evolutionary algorithm with a novel assignment scheme. The scheme eliminates the need for any additional replacement scheme, while ensuring diversity among the population of candidate solutions. Furthermore, to deal with constrained optimization problems efficiently, marginally infeasible solutions are preserved to aid search in promising regions of interest. The performance of the algorithm is objectively evaluated using a number of benchmark and practical problems, and compared with a number of recent algorithms. Finally, we also formulate a practical many-objective problem related to wind-farm layout optimization and illustrate the performance of the proposed approach on it. The numerical experiments clearly highlight the ability of the proposed algorithm to deliver the competitive results across a wide range of multi-/many-objective design optimization problems.

Funder

Australian Research Council

University of New South Wales

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3