Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a FAST Semi-Submersible Floating Wind Turbine Model

Author:

Coulling Alexander J.1,Goupee Andrew J.1,Robertson Amy N.2,Jonkman Jason M.2

Affiliation:

1. University of Maine, Orono, ME

2. National Renewable Energy Laboratory, Golden, CO

Abstract

To better access the abundant offshore wind resource, efforts are being made across the world to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools. The National Renewable Energy Laboratory (NREL) has created FAST, a comprehensive, coupled analysis CAE tool for floating wind turbines, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are underway to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. The research employs the 1/50th-scale DeepCwind wind/wave basin model test dataset, which was obtained at the Maritime Research Institute Netherlands (MARIN) in 2011. This paper describes further work being undertaken to continue this validation. These efforts focus on FAST’s ability to replicate global response behaviors associated with dynamic wind forces and second-order difference-frequency wave-diffraction forces separately and simultaneously. The first step is the construction of a FAST numerical model of the DeepCwind semi-submersible floating wind turbine that includes alterations for the addition of second-order difference-frequency wave-diffraction forces. The implementation of these second-order wave forces, which are not currently standard in FAST, are outlined and discussed. After construction of the FAST model, the calibration of the FAST model’s wind turbine aerodynamics, tower-bending dynamics, and platform hydrodynamic damping using select test data is discussed. Subsequently, select cases with coupled dynamic wind and irregular wave loading are simulated in FAST, and these results are compared to test data. Particular attention is paid to global motion and load responses associated with the interaction of the wind and wave environmental loads. These loads are most prevalent in the vicinity of the rigid-body motion natural frequencies for the DeepCwind semi-submersible, with dynamic wind forces and the second-order difference-frequency wave-diffraction forces driving the global system response at these low frequencies. Studies are also performed to investigate the impact of neglecting the second-order wave forces on the predictive capabilities of the FAST model. The comparisons of the simulation and test results highlight the ability of FAST to accurately capture many of the important coupled global response behaviors of the DeepCwind semi-submersible floating wind turbine.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3