A Review of Numerical and Physical Methods for Analyzing the Coupled Hydro–Aero–Structural Dynamics of Floating Wind Turbine Systems

Author:

Maali Amiri Mojtaba1ORCID,Shadman Milad1ORCID,Estefen Segen F.1ORCID

Affiliation:

1. Offshore Renewable Energy Group-GERO/COPPE, Ocean Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil

Abstract

Recently, more wind turbine systems have been installed in deep waters far from the coast. Several concepts of floating wind turbine systems (FWTS) have been developed, among which, the semi-submersible platform—due to its applicability in different water depths, good hydrodynamic performance, and facility in the installation process—constitutes the most explored technology compared to the others. However, a significant obstacle to the industrialization of this technology is the design of a cost-effective FWTS, which can be achieved by optimizing the geometry, size, and weight of the floating platform, together with the mooring system. This is only possible by selecting a method capable of accurately analyzing the FWTS-coupled hydro–aero–structural dynamics at each design stage. Accordingly, this paper provides a detailed overview of the most commonly coupled numerical and physical methods—including their basic assumptions, formulations, limitations, and costs used for analyzing the dynamics of FWTS, mainly those supported by a semi-submersible—to assist in the choice of the most suitable method at each design phase of the FWTS. Finally, this article discusses possible future research directions to address the challenges in modeling FWTS dynamics that persist to date.

Funder

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) and Financiadora de Estudos e Projetos

Carlos Chagas Filho Foundation–FAPERJ

Brazilian Research Council–CNPq

Center of Excellence in Digital Transformation and Artificial Intelligence of the Rio de Janeiro State-Network in Renewable Energy and Climate Change, Carlos Chagas Filho Foundation–FAPERJ

CNOOC Petroleum Brasil Ltda

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3