Abstract
AbstractCompared to onshore wind power, floating offshore wind power is a promising renewable energy source due to higher wind speeds and larger suitable available areas. However, costs are still too high compared to onshore wind power. In general, the economic viability of offshore wind technology decreases with greater water depth and distance from shore. Floating wind platforms are more competitive compared to fixed offshore structures above a certain water depth, but there is still great variety and no clear design convergence. Therefore, optimisation of the floating support structure in the preliminary phase of the design process is still of great importance, often up to personal experience and sensibility. It is fundamental that a suitable optimisation approach is chosen to obtain meaningful results at early development stages. This review provides a comparative overview of the methods, numerical tools and optimisation approaches that can be used with respect to the conceptual design of the support structure for Floating offshore wind turbines (FOWT) attempting to detail the limitations preventing the convergence to an optimal floating support structure. This work is intended to be as a reference for any researcher and developer that would like to optimise the support platform for FOWT.
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Energy Engineering and Power Technology,Water Science and Technology,Renewable Energy, Sustainability and the Environment
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献