A Test Rig for the Experimental Investigation on the Nonlinear Dynamics in the Presence of Large Contact Interfaces and Numerical Models Validation

Author:

Firrone Christian Maria1,Battiato Giuseppe1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Abstract

Abstract The simulation of the coupling between components modeled by finite elements (FEs) plays an important role for the prediction of the forced response of the assembly in terms of resonant frequencies, vibration amplitudes, and damping. This is particularly critical when the time-varying stress distribution must be limited for vibrating components with thin thickness coupled with large contacts. Typical examples can be found in aeronautical structures (plates, panels, and bladed disk components) assembled with bolted flanges, riveted lap joints, or joints without hole discontinuities like rail-hook joints, lace wire sealings, and strip dampers. In this paper, a new test rig is introduced for the experimental validation of a reduced-order model (ROM) based on the Gram–Schmidt Interface (GSI) modes applied to a friction contact whose dimensions are not negligible with respect to the size of the substructures. In this case, classical approaches like Craig–Bampton technique might be not effective in reducing the size of the problem when many contact nodes subjected to nonlinear contact loads cannot be omitted. The technique is implemented in a solution scheme in the frequency domain using penalty contact elements and the harmonic balance method. The preload on the joint is produced by permanent magnets to enhance the friction contact without introducing uncertainties due to bolting. Measurements are compared with the ROM simulations and with standard time-domain integration of the full FE model. The advantage of using the GSI technique is shown in terms of time computation and accuracy of the simulation.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3