Self-adaptive macroslip array for friction force prediction in contact interfaces with non-conforming meshes

Author:

Battiato GiuseppeORCID

Abstract

AbstractThe steady-state nonlinear forced response (NFR) of finite element (FE) models with friction joints is usually computed in the frequency domain through the combination of node-to-node contact elements and the Harmonic Balance Method (HBM). In the current state of the art, rare are the cases where the friction forces are estimated for contact interfaces with non-conforming mesh grids. This need is nowadays taking place due to the improving capability of commercial FE software to manage any kind of boundary condition (i.e., either coupling or contact), without requiring coincident pairs of nodes at the joint interfaces. Such an advantage becomes a drawback when the analysts are requested to investigate the NFR of the assembly by using build-in codes, where the contact forces prediction usually requires node-to-node contact elements whose parameters (i.e., the contact stiffnesses and friction coefficients) can be easily identified by means of experiments. This paper addresses the mentioned limitation, and proposes a novel self-adaptive macroslip array (SAMA) model for the estimation of the nonlinear friction forces on FE contact interfaces with non-conforming meshes. The SAMA model consists on a set of node-to-node contact elements ordered in parallel, whose contact parameters and normal preloads are identified through a step-by-step self-adaptive weighting algorithm that depends on the topology of the meshes in contact. The goodness of the proposed model is assessed on the calculation of the NFR of a bladed disk with shroud contacts, under the hypotheses of cyclic symmetry and HBM. The nonlinear dynamic behavior of the bladed disk is evaluated in two different cases. First, in the case of lack of node-to-node congruence at the contact interface for the structure being in its undeformed configuration, and second, in the case of a relevant static misalignment of the contact interfaces due to the application of large static loads.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3