Short-Term Mechanical Analysis of Polyethylene Pipe Reinforced by Winding Steel Wires Using Steel Wire Spiral Structural Model

Author:

Shi Jun1,Shi Jianfeng2,Chen Hanxin3,He Yibin4,Wang Qingjun4,Zhang Yue2,Li Guangzhong5

Affiliation:

1. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Wuhan Institute of Technology, School of Mechanical and Electrical Engineering, Wuhan 430074, China

2. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China

3. Wuhan Institute of Technology, School of Mechanical & Electrical Engineering, Wuhan 430074, China e-mails: ;

4. Wuhan Institute of Technology, School of Mechanical & Electrical Engineering, Wuhan 430074, China

5. Huangsheng Pipe Group Co., Ltd, Wenzhou 325000, China

Abstract

Polyethylene pipe reinforced by winding steel wires (PSP) is a new type of polymer–matrix composite pipe that is widely used in petroleum, chemical engineering, and water supply, etc. PSP is composed of a high-density polyethylene (HDPE) core pipe, an outer cover layer (HDPE), and a steel wire skeleton sandwiched in the middle. The steel wire skeleton is formed by crossly winding steel wires integrated with HDPE matrix by cohesive resin. In traditional models, components of PSP are considered linear elastic and the steel wire skeleton is assumed to be an orthotropic composite layer based on classical laminated plate theory. Although satisfactory results can be achieved, traditional models neglect the material nonlinearity of the steel wires and HDPE matrix, which is an important consideration to failure analysis. In this study, a new finite element model was constructed based on the actual steel wire spiral structure of PSP. The steel wires and the HDPE matrix were modeled separately and were represented by solid elements. The steel wires were not in contact with each other, and the interaction between the steel wires and the HDPE matrix was characterized by tie constraint. Experimental result of short-term burst pressure of PSP was used to validate the nonlinear model. The calculation results of the nonlinear model agreed well with the experimental result. The effects of the nonlinear material property of components on the calculation results were investigated, and the short-term mechanical responses of PSP were analyzed through the nonlinear model.

Funder

Hubei Provincial Department of Education

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3