Study on Mechanical Failure Behavior of Steel-Wire Wound Reinforced Thermoplastic Pipe under Combined Internal Pressure and Soil Landslide Conditions

Author:

Shi Jun,Hu Zhijie,Zeng Li,Lu Panlin,Chen Hanxin,Yu NanmingORCID,Li Xiang

Abstract

A steel-wire wound reinforced thermoplastic pipe (SWW-RTP) has been widely utilized in many industrial areas, and a soil landslide is an inevitable hazardous extreme condition for the SWW-RTP as it is usually buried underground. It is imperative to study the mechanical failure behavior and the failure criterion of the SWW-RTP under the combination of internal pressure and soil landslide conditions, and this paper is the first study to investigate the topic. In this paper, groups of stress–strain curves of high-density polyethylene (HDPE) and steel wires were obtained by uniaxial tensile tests at different strain rates, with the help of a Digital Image Correlation device (DIC). A rate-dependent constitutive model was employed to represent the mechanical behavior of the HDPE and to help deduce the stress–strain curve of the HDPE under the required strain rate, estimated from the static simplification of the dynamic soil landslide. Afterwards, a finite element model of the SWW-RTP, embedded in a cubic of soil, was established with the software ABAQUS. The SWW-RTP model was composed of HDPE solid elements, embedded with steel-wire truss elements, and the soil was characterized with the extended Drucker–Prager model. A quartic polynomial displacement distribution was applied to the soil model to represent the soil landslide. Then, the mechanical response of the SWW-RTP was analyzed. It was found that the failure criterion of the HDPE yield was more suitable for the pipe subjected to internal pressure and soil landslide conditions, instead of the steel-wire strength failure criterion always used in traditional research on the SWW-RTP. Further, the influence of landslide width, internal pressure and steel-wire number were discussed. The larger the width of the landslide area, the gentler the deformation of the pipeline; this resulted in an increase in the maximum landslide and a decrease in the maximum curvature with the width of the landslide area. The relatively high internal pressure was beneficial to the safety of the SWW-RTP under landslide, because the internal pressure could increase the stiffness of the pipeline. The number of steel wires had a limited influence on the maximum landslide required for the SWW-RTP’s failure. This work can be useful for the design and safe assessment of the SWW-RTP under internal pressure and soil landslide conditions.

Funder

National Natural Science Foundation of China

Foundation of Wuhan Science and Technology Bureau

Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety

research fund of Wuhan Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3