Computation of Parameters of a Form Grinding Wheel for Grinding of Shaving Cutter for Plunge Shaving of Topologically Modified Involute Pinion

Author:

Radzevich Stephen P.1

Affiliation:

1. EATON Corp., 31900 Sherman Avenue, Madison Heights, MI 48071

Abstract

Abstract The paper is targeting on the finishing of precision gears for low-noise/noiseless transmission for cars and light trucks. Transmission error is the predominant cause of gear noise. The application of a topologically modified pinion results in reduction of transmission error up to two times. The required modification of the pinion tooth surface is provided on a plunge shaving operation with application of a shaving cutter of an appropriate design. A novel approach for computation of parameters of a form grinding wheel for grinding of the shaving cutter for plunge shaving of a precision involute pinion with topologically modified tooth surface is reported in the paper. The developed approach for computation of parameters of the form grinding wheel is focused on application of the shaving cutter grinder with a lack of CNC articulation. The problem under consideration is solved using the DG/K-based approach of part surface machining earlier developed by the author. (The DG/K-approach is based on fundamental results obtained in differential geometry of surfaces, and in kinematics of multi-parametric motion of a rigid body in E3 space (See Radzevich, S.P., Sculptured Surface Machining on Multi-Axis CNC Machine. Monograph, 1991, Vishcha Shkola Publishers, Kiev (in Russian). See also Radzevich, S.P., 2001, Fundamentals of Surface Machining. Monograph, Rastan, Kiev (in Russian).) An analytical solution to the problem is discussed in the paper. The solution has been used for developing software for the Mitsubishi ZA30CNC shaving cutter grinder for the needs of the automotive industry. Computer simulation reveals high accuracy of the ground shaving cutter.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference16 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3