A Novel Analytical Explicit Method to Calculate Formed Wheel and Tooth Flank of Involute Gears in Profile Grinding Process

Author:

Guo Qiang1,Zhao Weisen1,Shu Changlin2,Lee Yuan-Shin3,Sun Yuwen4,Ren Lei1,Song Mingzhe1

Affiliation:

1. Henan Polytechnic University School of Mechanical and Power Engineering, , Jiaozuo 454150 , China

2. Nanjing High Speed Gear Manufacturing Co., Ltd. , Nanjing 211100 , China

3. North Carolina State University Edward P. Fitts Department of Industrial and Systems Engineering, , Raleigh, NC 27695

4. Dalian University of Technology Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, , Dalian 116024 , China

Abstract

AbstractGear drive is a common and efficient way to transfer power and motion. To ensure the machining accuracy of gears, the tooth flanks are formed by profile grinding technology in some cases. In the profile grinding process, the calculation of wheels using the information of gears named as the forward-calculation process and obtaining gears based on wheels (the backward-calculation process) traditionally adopt numerical ways. It is always time consuming and large code quantity. To conquer these drawbacks, this article presents an analytical method using the envelope theory to compute the contacting curves that are the basis of getting tooth flanks or wheels in the forward- or the backward-calculation process. For the forward-calculation process, the tooth flank is expressed in the form of an extended straight-line surface that can be taken as the generating line moving along the helix curve. The normal vector for an arbitrary point on the generating line is the same. By using this characteristic, the contacting curve can be explicitly gained as the function of only one parameter. Similarly, in the backward-calculation process, the formed wheel is expressed by a cross section rotating about its axis. For this type of surface, the guide curve is a circle, and the normal vectors of points on the guideline insect with the axis at the same point. Taking advantage of this principle, the contacting curve can be analytically expressed by only one unknown parameter. To verify the validity of the proposed method, some examples and comparative experiments are performed. The results show that the presented method is correct. When compared with the classical numerical way, the time span for the proposed method is 15 times less than that for the numerical way. When compared with the practical grinding wheel and the practical gear, the maximum errors are 0.18 mm and 0.0099 mm, respectively. The proposed method can be served as one of the universal ways to generate formed wheels or involute gears in the profile grinding process.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3