Potential Impacts of Net-Zero Energy Buildings With Distributed Photovoltaic Power Generation on the U.S. Electrical Grid

Author:

Kim Dongsu1,Cho Heejin1,Luck Rogelio1

Affiliation:

1. Department of Mechanical Engineering, Mississippi State University, P.O. Box 9552, Mississippi State, MS 39762 e-mail:

Abstract

This study evaluates the potential aggregate effects of net-zero energy building (NZEB) implementations on the electrical grid in a simulation-based analysis. To estimate the impact of NZEBs on the electrical grid, a simulation-based study of an office building with a grid-tied photovoltaic (PV) power generation system is conducted. This study assumes that net-metering is available for NZEBs such that the excess on-site PV generation can be fed to the electrical grid. The impact of electrical energy storage (EES) within NZEBs on the electrical grid is also considered in this study. Different levels of NZEB adoption are examined: 20%, 50%, and 100% of the U.S. office building stock. Results indicate that significant penetration of NZEBs could potentially affect the current U.S. electricity demand profiles by reducing purchased electricity from the electrical grid and by increasing exported electricity to the electrical grid during peak hours. Annual electricity consumption of simulated office NZEBs in the U.S. climate locations is in the range of around 94–132 kWh/m2 yr. Comparison of hourly electricity demand profiles for the actual U.S. demand versus the calculated net-demand on a national scales indicates that the peak percentage difference of the U.S. net-electricity demand includes about 10.7%, 15.2%, and 9.3% for 100% of the U.S. NZEB stock on representative summer, transition, and winter days, respectively. Using EES within NZEBs, the peak percentage differences are reduced and shifted to the afternoon, including 8.6%, 13.3%, and 6.3% for 100% of the U.S. NZEB stock on each representative day.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference49 articles.

1. Annual Electric Power Review;EIA,,2017

2. Zero Energy Buildings: A Critical Look at the Definition,2006

3. Getting to Net Zero;National Renewable Energy Laboratory,2009

4. Regenerative Design and Adaptive Reuse of Existing Commercial Buildings for Net-Zero Energy Use;Sustainable Cities Soc.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3