Evaluation of Multi-Functional Variable Refrigerant Flow System With Thermal Energy Storage and Photovoltaic-Based Distributed System for Net-Zero Energy Home Design

Author:

Kim Dongsu1,Tran Kelly2,Koh Jaeyoon3,Cho Heejin2

Affiliation:

1. Hanbat National University Department of Architectural Engineering, , P.O. Box 34158, S8-313 Daejeon , South Korea

2. Mississippi State University Department of Mechanical Engineering, , 210 Carpenter Engineering Building, P.O. Box 9552, Mississippi State, MS 39762

3. LG Electronics-USA , 4300 North Point Pkwy, Alpharetta, GA 30022

Abstract

Abstract Efficient heating and cooling systems and renewable energy sources are crucial for effectively designing net-zero energy homes (NZEHs). The study proposes using a multi-functional variable refrigerant flow system with hydraulic heat recovery (MFVRF-H2R) to reduce heating, ventilating, and air-conditioning (HVAC) and hot water energy usage, offering a practical approach to enable NZEH solutions. Photovoltaic (PV)-based on-site power generation is utilized to achieve zero energy performance in residential buildings. A building energy simulation study is conducted to assess the effectiveness of the combined systems in various climate conditions. To develop the simulation model, the US National Institute of Standards and Technology (NIST)’s net-zero energy residential test facility is used as the benchmark for NZEH baseline models. The MFVRF-H2R system is incorporated into the NZEH baseline to propose a more-energy-efficient design with heat recovery technology. eQUEST and post-processing calculations are used to simulate NZEH performance, comparing whole-building energy end-use and PV capacity for the baseline and alternative models with MFVRF-H2R. Results demonstrate that the proposed variable refrigerant flow (VRF)-based NZEH design can provide potential energy savings of up to 32% for cooling energy under various climate zones. Moreover, the NZEH design with the proposed MFVRF-H2R can achieve up to a 90% reduction in domestic hot water usage compared to an NZEH design without VRF heat recovery technology. The study suggests that the MFVRF-H2R system can provide practical and realistic solutions for making HVAC energy-efficient by minimizing thermal waste and reusing it for other thermal parts of the building, such as hot water applications. Consequently, this study highlights the effectiveness of the MFVRF-H2R system in designing NZEHs while considering heat recovery and renewable energy technologies.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. EIA: International Energy Outlook 2019 With Projections to 2050;US EIA,2019

2. Global Energy & CO2 Status Report: The Latest Trends in Energy and Emissions in 2018;US EIA,2018

3. Concept of Net Zero Energy Buildings (NZEB)—A Literature Review;Jaysawal;Clean. Eng. Technol.,2022

4. Near Zero Energy Homes—What Do Users Think?;Berry;Energy Policy,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3