Pulsatile Poiseuille Flow of a Viscoplastic Fluid in the Gap Between Coaxial Cylinders

Author:

Daprà Irene1,Scarpi Giambattista1

Affiliation:

1. DICAM, University of Bologna, 2 via Risorgimento, Bologna, Italy, 40136

Abstract

Several materials that are of interest in engineering present a yield stress and behave as viscoplastic fluids. This paper investigates numerically the motion of a Bingham fluid between two coaxial cylinders due to a periodic pressure gradient and/or to the periodic displacement of the internal cylinder. The constitutive equation presents a discontinuity at the zero shear rate. To overcome the difficulty, the rheologic law has been regularized using a smooth function based on the error function. The velocity fields have been calculated using an implicit finite difference method. The procedure has been validated, comparing the numerical results with the analytical solution of the same problem for a Newtonian fluid. The nonlinear behavior of the fluid is emphasized, comparing the effects due to the simultaneous action of the pressure gradient and the displacement of the internal wall with the sum of the effects due to the single actions. In all cases, the mean discharge in a period increases. The comparison between the effects of the forcing agents shows that if the dimensionless frequency is less than 10 the increases of the discharge obtained by applying the pulsatile pressure gradient or moving the internal wall are similar. At low frequencies the action of the gradient exceeds that of the moving wall, whereas for higher frequencies the effect of the moving wall increases rapidly because a fixed displacement of the internal cylinder leads to very great values for the velocity of the internal wall.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop;Proceedings of the Steklov Institute of Mathematics;2023-09

2. Modern Methods of Mechanics;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2023-09

3. Pulsating Flow of an Ostwald—De Waele Fluid between Parallel Plates;Water;2020-03-25

4. Simulation of Heave-Induced Pressure Oscillations in Herschel-Bulkley Muds;SPE Journal;2017-04-21

5. Viscoplastic flow in an extrusion damper;Journal of Non-Newtonian Fluid Mechanics;2016-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3