Effect of Driven Sidewalls on Mixed Convection in an Open Trapezoidal Cavity With a Channel

Author:

Ismael Muneer A.1,Hussein Ahmed Kadhim2,Mebarek-Oudina Fateh3,Kolsi Lioua4

Affiliation:

1. Mechanical Engineering Department, Engineering College, University of Basrah, Basrah 61004, Iraq

2. Mechanical Engineering Department, College of Engineering, University of Babylon, Babylon City, Hilla 51001, Iraq

3. Department of Physics, Faculty of Sciences, University of 20 août 1955–Skikda, B.P. 26, Road of El-Hadaiek, Skikda, 21000, Algeria

4. Mechanical Engineering Department,College of Engineering, Ha’il University, Ha’il City 2440, Saudi Arabia; Research Laboratory of Metrologyand Energy Systems, LR18ES21, National Engineering School, University of Monastir, Monastir 5000, Tunisia

Abstract

Abstract The mixed convection in an open trapezoidal lid-driven cavity connected with a channel is investigated in the present paper. Four different cases were considered depending on the movement of the cavity sidewalls. For case I, the left sidewall moves downward; for case II, the left sidewall moves downward and the right one moves upward; while for case III, only the right sidewall moves upward. A comparative case (case 0) is accounted when both sidewalls are assumed stationary. The base of the cavity is subjected to a localized heat source of constant temperature Th. The effects of Richardson number Ri and Reynolds number ratio Rer on the flow and thermal fields have been investigated. The results indicated that for cases I and II, the average Nusselt number increases with the increase of the Richardson number and Reynolds number ratio. Moreover, it was found that the maximum average Nusselt number occurs with case I. When the lid-driven speed is three times that of the inlet airflow velocity, the augmentations of the average Nusselt number compared with stationary walls are 163%, 158%, and 96% for cases I, II, and III, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3