Efficiency Prediction of Centrifugal Pump Using the Modified Affinity Laws

Author:

Agarwal Rahul1,Patil Abhay1,Morrison Gerald1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

Abstract This research is a continuation of efforts aimed at establishing the modified affinity laws for viscosity to predict the pump performance directly from a plot in terms of dimensionless numbers, i.e., flow coefficient, Reynolds number, head coefficient, and efficiency. The group has earlier proposed modified head coefficient affinity law. This work proposes and validates a similar efficiency plot that completes the set of modified affinity laws that include all the input and output parameters for a specific pump design and type. A wide range of viscosities and flow rates are considered for CFD analysis to have a comprehensive set of data that includes enough data points to comment on both the laminar and turbulent flow cases categorized based on the hydraulic Reynolds number (2300). Initial analysis shows some inconsistency based on laminar versus turbulent simulation model selection which is addressed in the latter part of this work. In general, two curves can be constructed for laminar and turbulent flow cases. These curves have different axes parameters (exponents of the dimensionless numbers) depending on the plot being for a laminar or a turbulent flow case. Validation with established experimental data shows good agreement in terms of the variation of axes parameters (their exponents) depending on the pump type for a single suction impeller and a double suction impeller pump. The distinction between laminar and turbulent flow cases is found to be applicable to established experimental data as well.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference17 articles.

1. Experimental Visualization of Two-Phase Flow Inside an Electrical Submersible Pump Stage;Barrios;ASME J. Energy Resour. Technol.,2011

2. Two-Phase Flow Characterization in a Split Vane Impeller Electrical Submersible Pump;Pirouzpanah;J. Pet. Sci. Eng.,2017

3. Modeling Oscillatory Behavior of Electrical Submersible Pump Wells Under Two-Phase Flow Conditions;de Melo Vieira;ASME J. Energy Resour. Technol.,2014

4. The Influence of Viscosity on Centrifugal Performance;Ippen;Trans. ASME,1946

5. Pumping Highly Viscous Fluids With Centrifugal Pumps—Part 1;Gülich;World Pumps,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3