Experimental Study on Gas–Liquid Performance and Prediction of Shaft Power and Efficiency by Dimensionless Coefficients in a Multistage Electrical Submersible Pump

Author:

Chang Liang1,Xu Qiang1,Yang Chenyu1,Su Xiaobin1,Dai Xiaoyu1,Guo Liejin1

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University , No. 28, West Xianning Road, Xi'an, Shaanxi 710049, China

Abstract

AbstractElectrical submersible pumps (ESPs) widely used in oil-gas artificial lift consume a lot of electric energy in long-term operation. This paper mainly focuses on the gas–liquid performance and predicting shaft power and efficiency of a 25-stage ESP. First, the calculation methods of two-phase hydraulic parameters and corresponding dimensionless hydraulic coefficients based on isothermal compression are proposed. Ignoring the gas compressibility will result in large errors in calculating two-phase hydraulic parameters. Then, the effects of liquid flowrate, inlet gas volume fraction, and rotational speed on head, shaft power, and efficiency are analyzed. The severe two-phase head degradation disappears in downstream stages of the ESP because of the decreasing interstage gas volume fraction. Similar to the head, the shaft power and efficiency decrease slowly at first, then rapidly, and finally slowly with the increase of inlet gas volume fraction. Finally, correlations are proposed for predicting the shaft power and efficiency by the dimensionless head and flow coefficients. There is a power function relation between two-phase head coefficient and efficiency. Thus, through the pump head which can be easily acquired by differential pressure signals in pipeline, prediction correlations for shaft power and efficiency are established with the relative errors lower than 10%. The prediction method based on two-phase dimensionless coefficients can also be referenced to ESPs with different types.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3