A Numerical Study on Erosion Model Selection and Effect of Pump Type and Sand Characters in Electrical Submersible Pumps by Sandy Flow

Author:

Zhu Haiwen1,Zhu Jianjun2,Rutter Risa3,Zhang Hong-Quan1

Affiliation:

1. McDougall School of Petroleum Engineering, The University of Tulsa, 800 S Tucker Dr., Tulsa, OK 74104

2. College of Petroleum Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing 102249, China

3. Baker Hughes, a GE company, 200 W Stuart Roosa Dr., Claremore, OK 74107

Abstract

AbstractThe electrical submersible pump (ESP) is one of the most widely used artificial lift methods in the petroleum industry. Although not recommended to be used in sand production well, ESP is still applicable in high producing well with a minimal percentage of solid concentration. Besides, the temporarily produced fracture sand from the proppant backflow can also severely reduce ESP boosting ability in weeks or months. Therefore, it is crucial to study the wear in ESP stages under sandy flow condition. Various erosion equations and models were developed for different materials and affecting factors. However, the predictions of these erosion models in ESPs need to be evaluated to make a proper selection. Comparisons of wear patterns and erosion rates were conducted using the computational fluid dynamics (CFD) software ANSYS. In order to validate the simulation results, an experimental facility was designed and constructed to study the sand erosion process in an ESP. Stages were painted to obtain erosion patterns, and the weight loss was measured. Six erosion models were implemented in the simulations to select the most accurate one in predicting ESP erosion rates. Then, three ESPs, including two mixed-type pumps and one radial-type pump, were modeled to study the effect of pump types with the selected erosion model. Finally, the steady-state discrete phase model (DPM) erosion simulations were carried out to investigate particle density and size effects.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3