New Formulation for Sandstone Acidizing That Eliminates Sand Production Problems in Oil and Gas Sandstone Reservoirs

Author:

Mahmoud Mohamed1

Affiliation:

1. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia e-mails: ;

Abstract

The sandstone rocks' integrity and consolidation may be highly affected by the type and the strength of the stimulation fluids. Strong acids such as HF/HCl impair the rock consolidation. The reduction in the sandstone rock consolidation will trigger the sand production. Sand causes erosion of downhole and surface equipment especially when it is produced with high gas flow rates. In this study, gentle stimulation fluids for sandstone that consists of chelating agents and catalyst were proposed. The chelating agents are diethylene triamine penta acetic acid (DTPA) and ethylene diamine tetra acetic acid (EDTA). This is the first time to introduce a catalyst (potassium carbonate) in sandstone acidizing. Potassium carbonate was found to work as a clay stabilizer and catalyst that enhances the dissolution of chlorite clay mineral in the sandstone rock. The objective of introducing the catalyst is to enhance the solubility of the insoluble minerals such as chlorite clay minerals. The change in the mechanical properties of sandstone rocks (Bandera and Berea) was evaluated. The possibility of the formation damage after using seawater-based chelating agents was investigated and compared to HF/HCl mud acid. Coreflooding experiments were conducted to evaluate the effect of these fluids on the rock integrity. Computed tomography (CT) scanner was used to assess the formation damage. Different models were used to predict the sand production possibility after the stimulation with chelating agent/catalyst, and this was compared to the HF/HCl mud acid. The results showed that the permeability of sandstone core increased after acidizing. The reduction in CT-number after acidizing confirmed that no formation damage occurred. Rock mechanics evaluation showed no major changes occurred in the rock moduli and no sand production was observed. The model results showed that using chelating gents to stimulate Berea (BR) and Bandera (BN) sandstone cores did not cause sand production. Applying the same models for cores stimulated by HF/HCl acids indicated high possibility of sand production. The addition of potassium carbonate to DTPA chelating agents enhanced the chlorite clay mineral dissolution based on the inductively coupled plasma (ICP) analysis. Potassium carbonate as a catalyst did not affect the sandstone integrity because it only enhanced the dissolution of chlorite clay minerals (selective dissolution) and did not affect the solubility of carbonate minerals which are the primary cementing materials in the sandstone cores. A new dimensionless number was developed that describes the relation between the number of pore volumes (PVs) contacted the rock and the radial distance from the wellbore.

Funder

King Abdulaziz City for Science and Technology

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3