A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics

Author:

Negrut Dan1,Jay Laurent O.2,Khude Naresh1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706

2. Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa-City, IA 52242

Abstract

The premise of this work is that the presence of high stiffness and/or frictional contact/impact phenomena limits the effective use of high order integration formulas when numerically investigating the time evolution of real-life mechanical systems. Producing a numerical solution relies most often on low-order integration formulas of which the paper investigates three alternatives: Newmark, HHT, and order 2 BDFs. Using these methods, a first set of three algorithms is obtained as the outcome of a direct index-3 discretization approach that considers the equations of motion of a multibody system along with the position kinematic constraints. The second batch of three algorithms draws on the HHT and BDF integration formulas and considers, in addition to the equations of motion, both the position and velocity kinematic constraint equations. Numerical experiments are carried out to compare the algorithms in terms of several metrics: (a) order of convergence, (b) energy preservation, (c) velocity kinematic constraint drift, and (d) efficiency. The numerical experiments draw on a set of three mechanical systems: a rigid slider-crank, a slider-crank with a flexible body, and a seven body mechanism. The algorithms investigated show good performance in relation to the asymptotic behavior of the integration error and, with one exception, result in comparable CPU simulation times with a small premium being paid for enforcing the velocity kinematic constraints.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3