An Accelerated Method for Creep Prediction From Short Term Stress Relaxation Tests

Author:

Guo J. Q.1,Li F.1,Zheng X. T.2,Shi H. C.1,Meng W. Z.1

Affiliation:

1. Laboratory of Mechanical Structural Strength, Anyang Institute of Technology, 1 Yellow-River Avenue, Anyang, Henan 455000, China

2. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Wuhan Institute of Technology, Wuhan 430205, China e-mail:

Abstract

With the development of ultrasupercritical power generation technology, creep strength of high-temperature materials should be considered for safety evaluation and engineering design. However, long-time creep testing should be conducted by traditional creep assessment methods. This paper established a high-efficient prediction method for steady creep strain rate and creep strength based on short-term relaxation tests. Equivalent stress relaxation time and equivalent stress relaxation rate were defined according to stress relaxation characteristics and the Maxwell equation. An accelerated creep prediction approach from short-term stress relaxation tests was proposed by defining the equivalent relaxation rate as the creep rate during the steady stage. Stress relaxation and creep tests using high-temperature material 1Cr10NiMoW2VNbN steel were performed to validate the proposed model. Results showed that the experimental data are in good agreement with those predicted solutions. This indicates that short-term stress relaxation tests can be used to predict long-term creep behavior conveniently and reliably, and the proposed method is suitable for creep strength design and creep life prediction of 9–12%Cr steel used in ultrasupercritical unit at 600 °C.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3