Novel Pressure Vessel for Pressurizing Corrosive Liquids With Applications in Accelerated Life Testing of Composite Materials

Author:

Fontaine Dillon1,Marshall Anthony1,Shukla Arun1

Affiliation:

1. Dynamic Photomechanics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881

Abstract

Abstract A system was designed for high-pressure accelerated life testing (ALT) of composite materials exposed to saline water solutions or other potentially corrosive media. The system was comprised primarily of a large stainless steel pressure vessel with the capability to perform extended pressure holds of up to 41.3 MPa at temperatures up to 70 °C. Using a nylon fabric-reinforced Buna-N rubber diaphragm as a media isolator and an inert ceramic coating on all wetted surfaces of the vessel, 3.5% saline water solutions were successfully held at test pressures and temperatures for extended periods with no evidence of corrosion or other degradation even after several days of exposure. Pressurization was achieved through a hydraulic pump system, which contained pressure monitoring equipment and valves and was isolated from the saline water by the diaphragm. The temperature of the entire vessel and contents was maintained by complete immersion in a heated, filtered water bath. The efficacy of using an elastomeric diaphragm to transfer large pressures between two near-incompressible fluids without mixing was shown, provided adequate reinforcement in the form of an interwoven fabric was provided to prevent tearing and extrusion from the extreme through-thickness stresses, particularly at clamping locations. Discussion on the effects of temperature, material, thickness, reinforcement, and sealing methods on the effectiveness and repeatability of the system is provided, and a demonstration of an accelerated test on a carbon–fiber composite is also presented.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the vessel hydraulic system for collecting and pumping oily waters;MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg>;2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3