Performance of Proton Exchange Membrane in the Presence of Mg2+

Author:

Li Guo1,Tan Jinzhu2,Gong Jianming2,Zhang Xiaowei2,Xin Yanchao2,Hu Xuejia2

Affiliation:

1. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China e-mail:

2. School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 211816, China

Abstract

Proton exchange membrane (PEM) fuel cell is regarded as one of the potential renewable energy which may provide a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great progress has been made, long-term stability and durability is still an issue. The contamination ion plays an important role on the electrical performance of PEM fuel cell. This paper investigates the effect of Mg2+ contamination on PEM fuel cell performance as a function of Mg2+ concentration. Two levels of Mg2+ concentration was chose. From the experimental results, it can be obtained that a significant drop in fuel cell performance occurred when Mg2+ was injected into the anode fuel stream. The voltage and power density of fuel cell decreased larger and larger with increase of Mg2+ concentration over time. The Mg2+ mainly caused the concentration polarization loss from the anode catalyst to the membrane in fuel cell.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3