Influence of Gas-Liquid Two-Phase Intermittent Flow on Hydraulic Sand Dune Migration in Horizontal Pipelines

Author:

Goharzadeh Afshin1,Rodgers Peter1,Touati Chokri1

Affiliation:

1. Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi 2533, United Arab Emirates

Abstract

This paper presents an experimental study of three-phase flows (air-water-sand) inside a horizontal pipe. The results obtained aim to enhance the fundamental understanding of sand transportation due to saltation in the presence of a gas-liquid two-phase intermittent flow. Sand dune pitch, length, height, and front velocity were measured using high-speed video photography. Four flow compositions with differing gas ratios, including hydraulic conveying, were assessed for sand transportation, having the same mixture velocity. For the test conditions under analysis, it was found that the gas ratio did not affect the average dune front velocity. However, for intermittent flows, the sand bed was transported further downstream relative to hydraulic conveying. It was also observed that the slug body significantly influences sand particle mobility. The physical mechanism of sand transportation was found to be discontinuous with intermittent flows. The sand dune local velocity (within the slug body) was measured to be three times higher than the averaged dune velocities, due to turbulent enhancement within the slug body.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3