Influence of slug flow on sand dune transport in a 3.6° upward inclined pipeline

Author:

Goharzadeh Afshin1ORCID,Nossair Ahmed1,Rodgers Peter1,Chai John2

Affiliation:

1. Department of Mechanical and Nuclear Engineering Khalifa University Abu Dhabi United Arab Emirates

2. Department of Aerospace United Arab Emirates University Al Ain United Arab Emirates

Abstract

AbstractThis study presents an experimental investigation of sand conveying from a stationary flatbed through two‐phase liquid–gas flows as a function of the fluids flow rates and pipeline orientation (α = 0°, and α = +3.6°). The characteristics of sand particle transportation by saltation, sand dune formation process and morphologies are visualized using a transparent cylindrical acrylic pipeline and digital photography. It was observed that slug flow regime was the dominant mechanism to lift the sand particles for both horizontal and upward inclinations. It was also found that sand dunes deconstructed more quickly at an upward inclination than horizontal position. For the upward inclination, the conveying phenomenon is characterized by sand bed lifting, suspension, and backward entrainment below the air bubble in the water film. Due to the increased liquid flow rates, higher dune velocity is recorded for the inclined condition. The dune pitch length grew for the horizontal configuration after the transient phase, as a result of the gravitational force effect, while it remained constant for the inclined orientation. In both conditions the slip face angle decreased with time; however, for the inclined configuration, this angle was lower because of the higher upstream liquid flow rate. These results provide important insights into the effect of pipe inclination on bed‐load mode solid transport by two‐phase flow inside a closed circular conduit. The obtained experimental data can be used to validate future numerical investigations.

Publisher

Wiley

Reference44 articles.

1. Influence of sand production on pressure drawdown in horizontal wells: Theoretical evidence

2. Sand production: A smart control framework for risk mitigation

3. Pipeline flow of gas, liquid and sand mixture at low;Gillies RG;Velocity J Can Pet Technol,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3