Wear Mechanisms of Gray Cast Iron in the Presence of Environmentally Friendly Hydrofluoroolefin-Based Refrigerant and the Effect of Tribofilm Formation

Author:

Wasim Akram M.1,Polycarpou Andreas A.12

Affiliation:

1. Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, IL 61801

2. Mechanical Engineering Department, Texas A & M University, College Station, TX 77843 e-mail:

Abstract

Hydrofluoroolefin-based refrigerant (2,3,3,3-tetrafluoropropene, namely, HFO-1234yf), which has been developed as an environmentally friendly refrigerant, is proposed as a direct replacement solution in automotive air-conditioning compressor applications. In the present work, the wear mechanisms of this refrigerant using gray cast iron interfaces were investigated under a wide range of operating conditions. A critical velocity was measured from scuffing type experiments, where beyond that maximum interfacial loads did not change significantly with sliding velocity, suggesting a mechanical rubbing-type wear mechanism. Below the critical velocity, scuffing loads decreased almost linearly with sliding velocities. Wear type experiments identified two different wear mechanisms, namely, oxygen-dominating and fluorine-dominating wear, depending on sliding velocities and normal loads. Oxygen-dominating wear mechanism prevailed under low sliding velocities and normal loads. In contrast, fluorine-dominating wear was predominant under moderate sliding velocities and low or moderate loads. The formation of protective tribofilms and their effect on the wear mechanism was used to construct a wear map.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3