Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Abstract
Muskhelishvili-Kolosov complex stress functions are used to find the stresses and displacements around two-dimensional cavities under plane strain or plane stress. The boundary conditions considered are either uniform pressure at the cavity surface with vanishing stresses at infinity, or a traction-free cavity surface with uniform biaxial compression at infinity. A closed-form solution is obtained for the case where the mapping function from the interior of the unit circle to the region outside of the cavity has a finite number of terms. The area change of the cavity due to hydrostatic compression at infinity is examined for a variety of shapes, and is found to correlate closely with the square of the perimeter of the hole.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献