Hybrid Journal Bearings: Theoretical and Experimental Results

Author:

Bou-Said B.1,Chaomleffel J. P.1

Affiliation:

1. Laboratoire de Me´canique des Contacts, I.N.S.A., 69621 Villeubanne, France

Abstract

The analysis of actual lubrication problems needs to take into account particularities in the flow coming from kinematic conditions and contact geometry. For hybrid journal bearings lubricated by low dynamic viscosity fluid, turbulence and pressure drops due to inertia forces in the recess outlets are phenomena which must be taken into account to compute their working characteristics. A global method of study of lubricated contacts in isothermal laminar or not laminar flow by finite element method is presented. It can solve a great number of lubrication problems. A new type of approximation element for lubrication (Hermitian type) is used because it offers the following advantages: The nonlinearities in lubrication which come from turbulence phenomena, geometrical discontinuities (pressure drops) or boundary conditions (recess pressure) require the derivation of unknown functions. Added interpolations are not necessary to determine these values because the nodal unknowns are the values of the function and its derivatives in the two directions. As the modified Reynolds equation is in Cartesian coordinates, in the case of closed geometries such as journal bearings, joining is done just by nodal identification which guarantees continuity of the pressure and of its derivatives. The validity of this numerical model is realized with an experimental study done with a three recess hybrid journal bearing for different kinematic and geometric configurations. In a general way, experimental and theoretical results are in good agreement.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3