Computational Model Development for Hybrid Tilting Pad Journal Bearings Lubricated with Supercritical Carbon Dioxide

Author:

Mehdi Syed MuntazirORCID,Kim Tae HoORCID

Abstract

Fluid film bearings lubricated with supercritical carbon dioxide (sCO2) eliminate the infrastructural requirement for oil lubricant supply and sealing in turbomachinery for sCO2 power systems. However, sCO2’s thermohydrodynamic properties, which depend on pressure and temperature, pose a challenge, particularly with computational model development for such bearings. This study develops a computational model for analyzing sCO2-lubricated tilting pad journal bearings (TPJBs) with external pressurization. Treating sCO2 as a real gas, the Reynolds equation for compressible turbulent flows solves the pressure distribution using the finite element method, and the Newton−Raphson method determines the static equilibrium position by simultaneously calculating forces, moments, flow rates of externally pressurized sCO2, and pressure drop due to flow inertia. The finite difference method solves the energy equation for temperature distribution. The density and viscosity of sCO2 are converged using the successive substitution method. The obtained predictions agree with the previous and authors’ computational fluid dynamics predictions, thus validating the developed model. Hybrid lubrication increases the minimum film thickness and stiffness up to 80% and 65%, respectively, and decreases the eccentricity ratio by up to 65% compared to those of pure hydrodynamic TPJB, indicating significant improvement in the load capacity. The bearing performance is further improved with increasing sCO2 supply pressure.

Funder

National Research Foundation of Korea

Korea Energy Technology Evaluation and Planning

Korea Institute of Energy Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles;Brun,2017

2. Operation and Analysis of a Supercritical CO2 Brayton Cycle;Wright,2010

3. Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle

4. Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems

5. High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3