Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems

Author:

Turchi Craig S.1,Ma Zhiwen1,Neises Ty W.1,Wagner Michael J.2

Affiliation:

1. e-mail:

2. e-mail:  National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401

Abstract

Supercritical CO2 (s-CO2) operated in a closed-loop Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for concentrating solar power (CSP) applications. Brayton-cycle systems using s-CO2 have a smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. The simpler machinery and compact size of the s-CO2 process may also reduce the installation, maintenance, and operation cost of the system. In this work we explore s-CO2 Brayton cycle configurations that have attributes that are desirable from the perspective of a CSP application, such as the ability to accommodate dry cooling and achieve greater than 50% efficiency, as specified for the U.S. Department of Energy SunShot goal. Recompression cycles combined with intercooling and/or turbine reheat appear able to hit this efficiency target, even when combined with dry cooling. In addition, the intercooled cycles expand the temperature differential across the primary heat exchanger, which is favorable for CSP systems featuring sensible-heat thermal energy storage.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3