Blade Forced Response Prediction for Industrial Gas Turbines: Part 2 — Verification and Application

Author:

Ning Wei1,Moffatt Stuart2,Li Yansheng1,Wells Roger G.1

Affiliation:

1. Alstom Power UK, Ltd., Lincoln, UK

2. University of Durham, Durham, UK

Abstract

This is part two of a two-part paper. Part One describes the methodologies of a blade forced response prediction system. The emphasis of this part is to demonstrate the capability and computational efficiency of the system for predicting blade forced response. Part two firstly presents verification of the multistage time-linearized unsteady flow solver through comparison of predicted blade surface pressure distributions with data measured on a VKI transonic turbine stage. It concludes with presentation of the results of an analysis carried out on the last stage rotor blade of an ALSTOM three-stage transonic test compressor. In the analysis, strain gauge results together with Finite Element (FE) modal analysis identify the resonant crossings. The mode shape of the blade vibration is used in the CFD code to predict the blade aerodynamic damping. The aerodynamic damping is compared with the blade system damping obtained from the strain gauge tests. The variation is shown of aerodynamic and mechanical damping with blade mode shape. The blade unsteady modal forces induced by the upstream stators are derived from the calculated unsteady flows. The blade vibration at three resonant crossings is compared with those given by strain gauge measurements. Good comparisons and high computational efficiency demonstrate that the forced response methodologies described in Part One can be used in the blade design process to tackle blade aeromechanical issues.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3