Application of the Modal Approach for Prediction of Forced Response Amplitudes for Fan Blades

Author:

Eichner Franziska1,Belz Joachim1

Affiliation:

1. Institute for Aeroelasticity DLR, German Aerospace Center, Bunsenstr. 10, Göttingen 37073, Germany e-mail:

Abstract

Forced response is the main reason for high cycle fatigue in turbomachinery. Not all resonance points in the operating range can be avoided especially for low order excitation. For highly flexible carbon fiber reinforced polymer (CFRP) fans, an accurate calculation of vibration amplitudes is required. Forced response analyses were performed for blade row interaction and boundary layer ingestion (BLI). The resonance points considered were identified in the Campbell diagram. Forced response amplitudes were calculated using a modal approach and the results are compared to the widely used energy method. For the unsteady simulations, a time-based linearization of the unsteady Reynolds average Navier–Stokes equations were applied. If only the resonant mode was considered, the forced response amplitude from the modal approach was confirmed with the energy method. Thereby, forced response due to BLI showed higher vibration amplitudes than for blade row interaction. The impact of modes which are not in resonant to the total deformation were investigated by using the modal approach, which so far only considers one excitation order. A doubling of vibrational amplitude was shown in the case of blade row interaction for higher rotational speeds. The first and third modeshapes as well as modes with similar natural frequencies were identified as critical cases. The behavior in the vicinity of resonance shows high vibration amplitudes over a larger frequency range. This is also valid for high modes with many nodal diameters, which have a greater risk of critical strain.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3