Development and Validation of a Model for Centrifugal Compressors in Reversed Flow Regimes

Author:

Powers Katherine H.1,Kennedy Ian J.2,Brace Chris J.2,Milewski Paul A.1,Copeland Colin D.3

Affiliation:

1. Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

2. Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

3. School of Sustainable Energy Engineering, Simon Fraser University, University Drive, Surrey, BC, V3T 0N1, Canada

Abstract

Abstract Turbochargers are widely used to help reduce the environmental impact of automotive engines. However, a limiting factor for turbochargers is compressor surge. Surge is an instability that induces pressure and flow oscillations that often damages the turbocharger and its installation. Most predictions of the surge limit are based on low-order models, such as the Moore–Greitzer model. These models tend to rely on a characteristic curve for the compressor created by extrapolating the constant speed lines of a steady-state compressor map into the negative mass flow region. However, there is little validation of these assumptions in the public literature. In this article, we develop further the first-principles model for a compressor characteristic presented in Powers, K., Brace, C., Budd, C., Copeland, C., & Milewski, P., 2020, “Modeling Axisymmetric Centrifugal Compressor Characteristics From First Principles,” J. Turbomachinery, 142(9), with a particular emphasis on reverse flow. We then perform experiments using a 58 mm diameter centrifugal compressor provided by Cummins Turbo Technologies, where we feed air in the reverse direction though the compressor while the impeller is spinning in the forward direction to obtain data in the negative mass flow region of the compressor map. This demonstrated experimentally that there is a stable operating region in the reverse flow regime. The recorded data showed a good match with the theoretical model developed in this article. We also identified a change in characteristic behavior as the impeller speed is increased, which, to the authors’ knowledge, has not been observed in any previously published experimental work.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Introduction to Internal Combustion Engines

2. Turbocharging the Internal Combustion Engine

3. Compressor Surge and Stall Propagation;Emmons;Transactions of the American Society of Civil Engineers,1955

4. Surge Dynamics in a Free-Spool Centrifugal Compressor System;Fink;ASME J. Turbomach.,1992

5. Multistage Centrifugal Compressor Surge Analysis: Part II—Numerical Simulation and Dynamic Control Parameters Evaluation;Arnulfi;ASME J. Turbomach.,1999

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3