Determination of a Numerical Surge Limit by Means of an Enhanced Greitzer Compressor Model

Author:

Haeckel Tobias1ORCID,Paul Dominik2,Leichtfuß Sebastian1,Schiffer Heinz-Peter1,Eißler Werner2

Affiliation:

1. Institute of Gas Turbines and Aerospace Propulsion, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany

2. Group of Energy Conversion and Thermal Propulsion Systems, Hochschule RheinMain, Am Brückweg 26, 65428 Rüsselsheim, Germany

Abstract

The surge limit of centrifugal compressors is a key parameter in the design process of modern turbochargers. Numerical methods like steady-state simulations are state-of-the-art methods for predicting the performance of the centrifugal compressor. In contrast to that, the determination of the surge limit with any numerical method is still an unsolved challenge. Since the extensive work of Greitzer and many other researchers in this field, it is well-known that surge is a system-dependent phenomenon. In the case of steady-state simulations, the simulation domain is chosen to be as small as possible due to the numerical cost. This simply implies that there is no system information included in the numerical model. Therefore, it is not possible to determine any system-dependent surge limit with today’s applied numerical methods. To overcome this issue, an enhanced Greitzer surge model, which has been developed at Tu Darmstadt, should act as a link between the simulation and the system in which the compressor will be operated. The focus of this paper will rather be on the methodology of determining the surge limit by means of numerical data than on the surge model itself. The methodology will be validated by experimental data of different systems.

Funder

European Regional Development Fund

Borgwarner Turbo Systems Engineering GmbH

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3